Skip to Navigation Skip to UConn Search Skip to Content
UConn University of Connecticut school of University of Connecticut
Search University of Connecticut Search UConn
Site A-Z

UConn A-Z
SCHOOL OF ENGINEERING

Combustion Diagnostics Laboratory

Search this Site
Combustion Diagnostics Laboratory
  • Home
  • Personnel
  • Publications
  • Facilities
    • Fuel Ignition Tester
    • GC/MS
    • High Pressure Counterflow Setup for Flame studies
    • High Pressure Counterflow Setup for Forced Ignition studies
    • IR Spectroscopy
  • Research Activities
  • Experimental Database
    • Laminar Flame Speed Database
    • RCM Database
  • Contact
Search this Site
  • Homepage
  • >
  • Research Activities
  • >
  • GPU Computing and SIMD/SIMT Vectorization

GPU Computing and SIMD/SIMT Vectorization

  • K. E. Niemeyer and C. J. Sung, “Accelerating Moderately Stiff Chemical Kinetics in Reactive-Flow Simulations using GPUs,” Journal of Computational Physics 256, 854-871 (2014).
  • K. E. Niemeyer and C. J. Sung, “Recent Progress and Challenges in Exploiting Graphics Processors in Computational Fluid Dynamics,” The Journal of Supercomputing 67 (2), 528-564 (2014).
  • N. J. Curtis, K. E. Niemeyer, and C. J. Sung, “An Investigation of GPU-Based Stiff Chemical Kinetics Integration Methods,” Combustion and Flame 179, 312-324 (2017).
  • K. E. Niemeyer, N. J. Curtis, and C. J. Sung, “pyJac: Analytical Jacobian Generator for Chemical Kinetics,” Computer Physics Communications 215, 188-203 (2017).
  • N. J. Curtis, K. E. Niemeyer, and C. J. Sung, “Using SIMD and SIMT Vectorization to Evaluate Sparse Chemical Kinetic Jacobian Matrices and Thermochemical Source Terms,” Combustion and Flame 198, 186-204 (2018).
  • A-Z Index
  • School of Engineering
  • UConn Health
  • Disclaimers, Privacy & Copyright
  • © University of Connecticut
  • Webmaster Login