An Investigation of GPU-Based Stiff Chemical Kinetics Integration Methods

Authors: N. J. Curtis, K. E. Niemeyer, and C. J. Sung

Direct link to the paper: https://doi.org/10.1016/j.combustflame.2017.02.005

Abstract:

A fifth-order implicit Runge–Kutta method and two fourth-order exponential integration methods equipped with Krylov subspace approximations were implemented for the GPU and paired with the analytical chemical kinetic Jacobiansoftware pyJac. The performance of each algorithm was evaluated by integrating thermochemical state data sampled from stochastic partially stirred reactor simulations and compared with the commonly used CPU-based implicit integratorCVODE. We estimated that the implicit Runge–Kutta method running on a single Tesla C2075 GPU is equivalent to CVODE running on 12–38 Intel Xeon E5-4640 v2 CPU cores for integration of a single global integration time step of 10-6 with hydrogen and methane kinetic models. In the stiffest case studied—the methane model with a global integration time step of 10-4 s—thread divergence and higher memory traffic significantly decreased GPU performance to the equivalent of CVODE running on approximately three CPU cores. The exponential integration algorithms performed more slowly than the implicit integrators on both the CPU and GPU. Thread divergence and memory traffic were identified as the main limiters of GPU integrator performance, and techniques to mitigate these issues were discussed. Use of a finite-difference Jacobian on the GPU—in place of the analytical Jacobian provided by pyJac—greatly decreased integrator performance due to thread divergence, resulting in maximum slowdowns of 7.11-240.96×; in comparison, the corresponding slowdowns on the CPU were just 1.39-2.61× underscoring the importance of use of an analytical Jacobian for efficient GPU integration. Finally, future research directions for working towards enabling realistic chemistry in reactive-flow simulations via GPU/SIMT accelerated stiff chemical kinetics integration were identified.

Citation: N. J. Curtis, K. E. Niemeyer, and C. J. Sung, “An Investigation of GPU-Based Stiff Chemical Kinetics Integration Methods,” Combustion and Flame 179, 312-324 (2017).